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Abstract
This paper proposes a nonintrusive encryption mechanism for pro-
tecting data confidentiality on the Web. The core idea is to encrypt
confidential data before sending it to untrusted sites and use key-
stores on the Web to manage encryption keys without intervention
from users. A formal language-based information flow model is
used to prove the soundness of the mechanism.

Categories and Subject Descriptors D.4.6 [Security and Protec-
tion]: Cryptographic controls; Information flow controls

General Terms Languages, Security

1. Introduction
People store increasing amounts of personal data (emails, contacts,
calendars, documents, photos and more) on the Web. Protecting the
confidentiality of online personal data is critical. It is also challeng-
ing because many users have a high tolerance for insecurity, but
a low tolerance for inconvenience. Websites share user-generated
data with business partners and have vulnerabilities that may lead
to information leaks, yet users ignore these risks and send confi-
dential data to untrusted sites in order to use their services.

Our goal is to design a protection mechanism that is nonintru-
sive, in the sense that it does not blindly prevent users from access-
ing web services that on the surface involve sending confidential
data to untrusted sites, and it requires little user intervention. The
solution exploits a simple observation: many websites only need to
store and/or forward users’ data without interpreting or processing
the data. For example, an online album service only needs to store
photos on the server side. Therefore, if the album site stores a photo
simply as a byte array, it is possible for users to store encrypted
photos on the album site without affecting usability of the service.
When accessing the album site, the user’s browser can retrieve en-
crypted photos from the site, and decrypt and display the photos to
the user. The challenge is to handle encryption and decryption with
little user intervention.

To address this challenge, we propose a symmetric encryption
scheme with transparent key generation and management. Keys
are stored on the Web so that they are world-accessible. Then,
encrypted data is augmented with the location of the key so that
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the receiver of encrypted data knows where to get the key. As a
result, end users are spared of the burden of generating, storing
and securing encryption keys. Web applications can encrypt and
decrypt data transparently, without affecting usability.

This nonintrusive encryption technique alone cannot ensure
data confidentiality. We still need to ensure that encryption keys
are not exposed to untrusted sites, that confidential data is not sent
to untrusted sites in cleartext, and that cryptographic primitives do
not introduce implicit flows [9]. These requirements can be satis-
fied using static information flow control [9, 16, 21], which labels
data with security levels and uses static program analysis to ensure
the absence of insecure information flows: high-confidentiality data
affecting low-confidentiality data. We imagine that the technique
can be deployed on both the user’s browser and on websites to
check web application code at load time.

This paper combines the nonintrusive encryption technique and
static information flow control, and presents a sequential security-
typed language (called Sweb) with cryptographic primitives. The
type system of Sweb ensures that well-typed code does not explic-
itly or implicitly assign cleartext confidential data to untrusted stor-
age locations (sites), satisfying a strong notion of confidentiality—
noninterference [11], albeit under some assumptions about the
strength of the encryption algorithm.

Previous work [4, 24] has shown that a security-typed language
with encryption primitives can enforce noninterference. These type
systems have treated the result of encryption as public, which only
makes sense if the encryption key is as confidential as the plaintext.
This constraint may be too strong for the web environment where
keys are stored online. In reality, a ciphertext is not necessarily
made public. As a result, it is possible to relax the constraint. In
the album site example, suppose Alice’s browser connects to the
album site through SSL. Then the encrypted photo is only readable
by Alice and the album site. As a result, Alice’s browser can store
the encryption key on some keystore even if Alice does not trust the
keystore site to access her photos, but does trust that the keystore
site and the album site will not collude to leak her photos. The
type system of Sweb formalizes this insight and results in more
permissive typing than previous work.

The idea of splitting a secret into multiple shares for high con-
fidentiality is well known [23, 22]. Our contribution is to apply the
idea to typing the encryption primitive, formalize the confidential-
ity guarantee and prove correctness by showing that the type system
enforces noninterference.

The rest of this paper is organized as follows. Section 2 de-
scribes the nonintrusive encryption technique. Section 3 introduces
the Sweb language. Section 4 discusses information flow control
enhanced with encryption. Section 5 describes the type system of
Sweb, and shows that it can enforce noninterference. Section 6 cov-
ers related work, and section 7 concludes.



2. Nonintrusive encryption
We propose the following nonintrusive encryption technique.

• Some websites, presumably more trusted than others, provide
keystore services. A keystore maps identifiers to symmetric
encryption keys, and a keystore service K provides two APIs:
newkey(K) returns a pair i : k where k is a fresh key, and i is
the identifier of k; K(i) returns the key mapped to i in K. Each
keystore service is publicly accessible through a name K.

• The encryption primitive has the form encrypt(d, K), which
obtains a new key k with identifier i from keystore K, encrypts
d with k to obtain the ciphertext c and returns c.K.i as the
encryption result.

• The decryption primitive has the form decrypt(c.K.i), which
retrieves the key k from keystore K with identifier i, decrypts
c with k and returns the plaintext.

Interestingly, this scheme does not provide a key generation
primitive and every encryption operation implicitly obtains a new
key from the keystore being used. The implicit key generation
makes key management transparent and less error-prone. In addi-
tion, it practically achieves the same effect as the IND-CPA security
(indistinguishability under chosen-plaintext attack) [7], since an at-
tacker can encrypt a chosen plaintext with the same key only once.

On the other hand, the treatment comes with the limitation that
keys cannot be reused. But this limitation is bearable in the web
environment, where storage is never the bottleneck. Suppose Alice
makes ten encryptions every day, and each key takes 1000 bytes.
Then all the keys that Alice needs in her lifetime take less than 500
megabytes of storage.

In addition, the encryption scheme is easy to deploy. With a
secure email service (or other existing secure storage services), a
browser extension can implement a keystore service straightfor-
wardly. For example, suppose Alice trusts her Gmail account to
keep mail confidential. Keystore alice@gmail.com can be imple-
mented as follows:

• To implement newkey(alice@gmail.com), her browser gen-
erates a new key k and a random identifier i, sends an email
〈subject : i, body : k〉 to alice@gmail.com through SSL
(luckily, gmail.com can be accessed through https) and re-
turns the pair i :k.

• To implement alice@gmail.com(i), her browser simply re-
trieves Alice’s email with subject i from gmail.com and re-
turns the email body.

Note that with session cookies or saved password, Alice’s browser
can access her Gmail account without her intervention, and thus the
encryption and decryption operations can be totally transparent. As
a result, Alice would be able to use an online album site safely,
perhaps not even realizing that her photos are encrypted before
being sent to the site and decrypted before being displayed in the
browser.

3. The language
The Web allows users to store and retrieve data, and invoke com-
putations, all through a global name space (URLs). These core web
functionalities can be modeled by a simple imperative language
(Sweb) with shared memory and functions. For example, let mem-
ory location mb represent user’s browser output and let mfoo.com

represent the web page http://foo.com. Then the assignment
statement mb :=!mfoo.com models a browser access to the URL
http://foo.com.

Suppose function name ffoo.com/cgi represents the CGI program
at http://foo.com/cgi. Then statement call ffoo.com/cgi mod-

References r := m | f | K
Values v ::= n | m | c.K.i

Expressions e ::= v | !e | decrypt(e) | e1 + e2

Statements s ::= e1 := e2 | e1 := encrypt(e2, K)
| if e then s1 else s2

| skip | s1; s2 | call f

Figure 1. Syntax of the Sweb language

els accessing the URL http://foo.com/cgi. The last statement
of ffoo.com/cgi should be mb := e, returning the result page to
the user’s browser. Furthermore, the following program models in-
voking the CGI program with two arguments (accessing the URL
http://foo.com/cgi?a1=v1&a2=v2):

mfoo.a1 := v1;
mfoo.a2 := v2;
call ffoo.com/cgi

while the code of ffoo.com/cgi retrieves the arguments from memory
locations mfoo.a1 and mfoo.a2. Note that Sweb is sequential and
does not model concurrent accesses to a URL. This treatment
of function arguments and results is crude but adequate for our
purposes.

Invoking a remote function through a URL can also be used for
communication between websites, and thus Sweb can express web
applications involving multiple websites, as shown in Section 3.3.

In Sweb, a simple dereferencing expression !m might represent
reading information from a remote website. Static information flow
analysis can prevent a good machine from running code that leaks
confidential information. But a compromised machine might still
try to read confidential data from a remote host and then leak the
data.

We assume that a run-time access control mechanism is de-
ployed so that read requests from untrusted machines for confiden-
tial data would be rejected. In particular, a keystore would not send
keys to untrusted machines, so a compromised machine is not able
to obtain confidential data by corrupting code execution. Therefore,
we can assume that code execution is safe on any server machine.
Note that this assumption would not be valid if data integrity inter-
acted with confidentiality as with robust declassification [27]. How-
ever, Sweb considers neither declassification nor data integrity.

3.1 Syntax
The syntax of the Sweb language is shown in Figure 1. A reference
r may be a memory location m, a function name f , or a keystore
name K. In Sweb, a value may be an integer n, a memory loca-
tion m or an encrypted value c.K.i where c is a ciphertext, and i
is a key identifier. An expression may be a value v, a dereference
expression !e (only dereferencing memory locations), or a decrypt
expression decrypt(e). For a technical reason (avoiding expressions
with side effects), the encryption primitive is formalized as a state-
ment e1 := encrypt(e2, K), which encrypts the value of e2 using
a key in keystore K and then assigns the encrypted value to the
memory location that is the result of e1.

Other statements of Sweb include the assignment e1 := e2, the
conditional statement if e then s1 else s2, the sequence s1; s2,
the skip statement skip, and the call statement call f . The call
statement supports recursive function calls, and thus Sweb does not
include a loop statement.

3.2 Operational semantics
Let W represent a state of the Web, which is a finite map, map-
ping memory locations to values, function names to programs, and
keystore names to keystores. A Sweb program s is evaluated in a



(E1)
W (m) = v

〈!m, W 〉 ⇓ v

(E2) 〈v, W 〉 ⇓ v

(E3)

〈e, W 〉 ⇓ c.K.i
W (K)(i) = k D(c, k) = v

〈decrypt(e), W 〉 ⇓ v

(E4)
〈e1, W 〉 ⇓ n1 〈e2, W 〉 ⇓ n2

〈e1 + e2, W 〉 ⇓ n1 + n2

(S1)
〈e, W 〉 ⇓ n n > 0

〈if e then s1 else s2, W 〉 7−→ 〈s1, W 〉

(S2)
〈e, W 〉 ⇓ n n ≤ 0

〈if e then s1 else s2, W 〉 7−→ 〈s2, W 〉

(S3)
W (f) = s

〈call f, W 〉 7−→ 〈s, W 〉

(S4)
〈s1, W 〉 7−→ 〈s′1, W ′〉

〈s1; s2, W 〉 7−→ 〈s′1; s2, W ′〉

(S5) 〈skip; s, W 〉 7−→ 〈s, W 〉

(S6)

〈e1, W 〉 ⇓ m 〈e2, W 〉 ⇓ v W (K) = K
newkey(K) = i :k E(v, k) = c

W ′ = W [K 7→ K[i 7→ k]][m 7→ c.K.i]

〈e1 := encrypt(e2, K), W 〉 7−→ 〈skip, W ′〉

(S7)
〈e1, W 〉 ⇓ m 〈e2, m〉 ⇓ v

〈e1 := e2, W 〉 ⇓ 〈skip, W [m 7→ v]〉

Figure 2. Operational semantics of Sweb

web state, resulting in new web states. Thus, a small evaluation step
is a transition from configuration 〈s, W 〉 to another configuration
〈s′, W ′〉. Because Sweb expressions have no side effects, we use
the notation 〈e, W 〉 ⇓ v to mean that evaluating e in web state W
results in the value v. The operational semantics of Sweb is shown
in Figure 2.

The notation W (r) represents the entity mapped to r. The
notation W [r 7→ v] (or W [r 7→ K]) denotes the web state obtained
by assigning value v (or keystore K) to r in W .

Most evaluation rules are standard. Rule (E3) evaluates decryp-
tion expressions. The key k for decrypting c.K.i is retrieved from
W (K) using identifier i. Applying the decryption function D to
the ciphertext c and key k results in v.

Rule (S6) is used to evaluate encryption statement e1 :=
encrypt(e2, K). Suppose the result of e1 is memory location m,
and the result of e2 is v, and W (K) is the keystore K, which is a
tuple 〈i :k, T〉, where i :k is a list of new identifier-key pairs that
have not been used for encryption, and T is a key table mapping
identifiers to keys that have been used to encrypt some value. The
auxiliary function newkey(K) returns the first identifier-key pair
in i :k, and K[i 7→ k] returns the keystore obtained by removing
i : k from the new key list and inserting it into the used key table
of K. This keystore formalization avoids introducing a random key
generator that would complicate the proof of noninterference.

Suppose newkey(K) = i : k. Then E(v, K) encrypts v with
key k and results in a ciphertext c. We assume the encryption
algorithm E is strong enough such that no information about v
or k can be inferred from the ciphertext c. Again, to simplify
the noninterference proof, we assume that E is deterministic. This
assumption does not make the system subject to chosen-plaintext
attacks because each key can be used only once for encryption.

In rule (S6), the new web state W ′ is obtained by assigning the
encrypted value c.K.i to m, and the keystore K[i 7→ k] to K.

3.3 Example
As simple as it is, Sweb is expressive enough to model some
real-world applications. Suppose Alice wants to buy something
from an on-line store foo.com. To place the order, she needs to
send her address and her credit card number to foo.com, which
then contacts visa.com to charge her card and ups.com to ship
the order. Suppose Alice does not trust foo.com to protect the
confidentiality of her address and card number. Assuming ups.com
and visa.com provide keystore services, the transaction can still
be performed in the following way:

• After Alice fills in the order form, her browser gets a new
key k1 with identifier i1 from ks.visa.com (the keystore of
visa.com), encrypts her card number (modeled by a memory
location in Sweb) with k1, and then sends ccard.Kks.visa.com.i1

to foo.com. Similarly, Alice’s address is encrypted with a
key k2 from ks.ups.com, and caddr.Kks.ups.com.i2 is sent to
foo.com. Then ffoo.com/order is called to handle the order. The
following code models the process:

mfoo.com/order?a1 := encrypt(!mcc, Kks.visa.com)
mfoo.com/order?a2 := encrypt(!maddr, Kks.ups.com)
call ffoo.com/order

• The code of ffoo.com/order processes an order and is shown as
follows:

mvisa.com/charge?account :=!mfoo.com/order?a1;
mvisa.com/charge?amount :=!mamount

call fvisa.com/charge;
mups.com/ship?addr :=!mfoo.com/order?a2;
call fups.com/ship;
mb :=!mtrack-num

The code first sends the encrypted card number and the charge
amount to visa.com and invokes the charge function. Then
the encrypted address is sent to ups.com (perhaps by printing
caddr.Kks.ups.com.i2 on a UPS shipping label). The UPS ship-
ping function returns a tracking number (mtrack-num), which is
returned to Alice’s browser (mb).
Interestingly, the code of ffoo.com/order can remain the same
no matter whether the values stored at mfoo.com/order?a1 and
mfoo.com/order?a2 are encrypted. This is generally the case be-
cause an untrusted site only needs to store and/or forward en-
crypted values. This property could allow an untrusted site to
work regardless of whether encryption is being used.

• The code of fvisa.com/charge is as follows:

mcard := decrypt(mvisa.com/charge?account);
!mcard :=!!mcard+!mvisa.com/charge?amount

This code first decrypts the encrypted memory location repre-
senting Alice’s card number and assigns the memory location
to mcard. Then it increments the value of !mcard by the order
amount.
Note that fvisa.com/charge runs on the server of visa.com, which
is trusted by ks.visa.com, and thus can read keys from the
keystore. It is important that key-retrieving requests from un-



trusted sites would be rejected by keystore ks.visa.com. As
discussed later in Section 5, the ability of a keystore to keep
keys confidential is specified by the type of the keystore and
taken into account by type checking.

• The code of fups.com/ship is as follows:

maddr := decrypt(mups.com/ship?addr);
call finternal.ups/shipping;
mtrack-num :=!mtrack-num + 1

First, it decrypts Alice’s address. Then it invokes an internal
shipping function to process the shipping order. Finally, it in-
crements the tracking number, simulating the creation of a new
tracking number.

4. Information flow control and encryption
Information flow control prevents high-confidentiality information
from flowing to low-confidentiality locations. The concepts of high
and low confidentiality are determined by labeling information and
memory locations with security labels from a lattice L. Given two
labels `1 and `2, if `1 ≤ `2 inL, then `1 represents a confidentiality
level lower than or equal to `2. Users are labeled too. A user with
label ` can observe any memory location with a label less than or
equal to `. Let L represent the confidentiality level of attackers (low
users). Then ` is a low-confidentiality label if ` ≤ L, and a high-
confidentiality label if otherwise.

For example, consider a statement m := e. Let `m and `e be the
label of m and e, respectively. Then `e ≤ `m must hold. Otherwise,
it is possible that `e 6≤ L and `m ≤ L, and the statement assigns a
high-confidentiality value to a low-confidentiality location.

Conventional information flow analysis works reasonably well
for ordinary computation, but applying it to cryptographic opera-
tions poses some challenges that have not yet been satisfactorily
addressed.

4.1 Addition and encryption
Consider an addition expression e1 + e2 with label l, where `1 and
`2 are the labels of e1 and e2, respectively. Because both the values
of e1 and e2 affect the value of e1 + e2, we conventionally require
`1 ≤ ` and `2 ≤ ` to ensure that no information about e1 and e2

can be leaked through their sum. Using the lattice join operation
(t), the two constraints can be represented by `1 t `2 ≤ `.

Encryption makes things a bit more interesting. Consider the
statement m := encrypt(e, K). Let `K be the label of keystore
K, and ` be the label of the value of m. According to evaluation
rule (S6), a new key k is used to encrypt the value of e, and k
is known to only users with label as high as `K . Although the
value of m is affected by k and the value of e, unlike the addition
case, constraints `K ≤ ` and `e ≤ ` are not needed, because no
information about the value of e and k can be inferred from the
encryption result. Instead, the following constraint needed to be
enforced because after encryption, the value of e can be computed
from the value of m and k:

`e ≤ ` t `K

As discussed in Section 5, this constraint leads to more precise and
permissive typing than treating the encryption result as public data.

4.2 Noninterference property
To show that information flow control is effective for protecting
confidentiality, we need to define confidentiality first. A strong no-
tion of confidentiality can be formalized in term of noninterfer-
ence [11], which intuitively means that high-confidentiality inputs
cannot interfere with low-confidentiality outputs.

For Sweb, the inputs of a program are just the initial web
state, and any web state resulted from program execution is part
of the outputs. Thus, a program s satisfies the noninterference
property if evaluating s under two web states with equivalent low-
confidentiality parts results in web states that also have equivalent
low-confidentiality parts. In other words, low users cannot distin-
guish the two executions.

Clearly, the key to defining the noninterference property is to de-
fine the notion that two web states W1 and W2 are low-equivalent
(written W1 ≈L W2, meaning W1 and W2 have equivalent low-
confidentiality parts). Without encryption, the definition is straight-
forward: W1 ≈L W2 if for any reference r, label(r) ≤ L implies
W1(r) = W2(r). Notation label(r) denotes the label of r. Specif-
ically, label(m) is the label of the value stored in m; label(K) is
the label of keys in K; label(f) is a lower bound of the labels of
side effects of the code of f .

With encryption, we have to consider more scenarios. Suppose
W1(m) = c1.K.i1 and W2(m) = c2.K.i2. Suppose c1 6= c2.
There are still two cases that a low user cannot distinguish the two
encrypted values. First, the low user cannot observe keystore K,
and thus does not know the encryption key. Then ciphertexts c1

and c2 are just random bits to the low user and could appear in
either execution. Second, the low user can observe keystore K,
but the decryption results are low-equivalent. Thus, we have the
following rules that recursively define the low-equivalent relation
between values:

v ≈L v
label(K) 6≤ L

c1.K.i1 ≈L c2.K.i2

label(K) ≤ L 〈decrypt(ci.K.i), W 〉 ⇓ vi, i ∈ {1, 2}
v1 ≈L v2

c1.K.i ≈L c2.K.i

More subtly, it is not sufficient to consider the low equivalence
for each individual memory location. Consider two low locations
m1 and m2. Suppose

W1(m1) = c.K.i W1(m2) = c.K.i
W2(m1) = c.K.i W2(m2) = c′.K.i′

and c 6= c′, and label(K) 6≤ L. Then W1(m1) ≈L W2(m1) and
W1(m2) ≈L W2(m2). However, W1 and W2 are distinguishable
to low users, because the values of m1 and m2 are created by
the same encryption operation according to W1, and by different
encryption operations according to W2. Furthermore, we need to
consider the case that W1(m1) and W1(m2) are different, but they
can be decrypted by low-confidentiality keys, and their decryption
results are the same.

Let W i,L(m) denote the value obtained by decrypting W (m)
for i times, and each time the decryption key is low-confidentiality.
Then we have the following definition:

Definition 4.1 (W1 ≈L W2). W1 ≈L W2 if the following
conditions hold:

• For any m, if label(m) ≤ L, then W1(m) ≈L W2(m).
• For any m1 and m2, if label(m1)tlabel(m2) ≤ L, then for any

i, j, W i,L
1 (m1) = W j,L

1 (m2) iff W i,L
2 (m1) = W j,L

2 (m2).
• For any K, if label(K) ≤ L, then W1(K) = W2(K).
• For any f , W1(f) = W2(f).

5. Security type system
In Sweb, information flow control is achieved through type check-
ing. The type system of Sweb ensures that any well-typed program
satisfies the noninterference property and cannot generate illegal
information flows at run time.



(INT) ` n : int`

(CIPHER)
Γ ` K : keystore` ref⊥ τ ≤ ` t `′

Γ ` c.K.i : [τ ]`′

(ADD)
Γ ` e1 : int`1 Γ ` e2 : int`2

Γ ` e1 + e2 : int`1t`2

(REF)
Γ(r) = τ

Γ ` r : (τ ref)`

(DEREF)
Γ ` e : τ ref`

Γ `!e : τ t `

(DEC)
Γ ` e : [τ ]`′

Γ ` decrypt(e) : τ t `′

(ENC)

Γ ` e1 : [τ ]`′ ref`1 Γ ` e2 : τ
Γ ` K : keystore` ref⊥

τ ≤ ` t `′ ` ≤ τ `1 ≤ `′

Γ ` e1 := encrypt(e2, K) : stmt`u`′

(ASSI)
Γ ` e1 : τ ref` Γ ` e2 : τ ` ≤ τ

Γ ` e1 := e2 : stmtlabel(τ)

(SEQ)
Γ ` s1 : τ Γ ` s2 : τ

Γ ` s1; s2 : τ

(SKIP) Γ ` skip : stmt`

(IF)
Γ ` e : int` ` ≤ τ Γ ` s1 : τ Γ ` s2 : τ

Γ ` if e then s1 else s2 : τ

(FUN)
Γ ` f : stmt` ref⊥

Γ ` call f : stmt`

(SUB)
Γ ` t : τ τ ≤ τ ′

Γ ` t : τ ′

Figure 3. Type system of Sweb

This paper does not attempt to deal with termination and timing
channels. Control of these channels is largely an orthogonal prob-
lem, and partially addressed in previous work [3, 20, 29].

The types of Sweb have the following syntax:

Base types β ::= int | [τ ] | τ ref
Types τ ::= β` | keystore` | stmt`

A type τ can be either a labeled base type β`, a keystore type
keystore` or a statement type stmt`. A value with type β` has
label `. A keystore with type keystore` is trusted to store keys
with label `. A statement with type stmt` has only side effects
with labels higher than or equal to `.

Base types include integer type int, encrypted data type [τ ] and
reference type τ ref. Value c.K.i has the encrypted data type [τ ]
if and only if it is generated by encrypting a value with type τ .

Let Γ represent a typing assignment, mapping references to
types. A typing judgment of Sweb has the form Γ ` s : τ (or
Γ ` e : τ ), meaning that statement s (or expression e) has type τ
with respect to Γ.

The typing rules of Sweb are shown in Figure 3. The interesting
rules are (CIPHER), (DEC) and (ENC), while other rules are stan-
dard in terms of static information flow tracking [26, 12, 28, 6, 19].

Notation ⊥ represents the bottom label. Suppose τ is β`. Then
notation τ ≤ `′ represents ` ≤ `′, and notation τ t `′ represents
β`t`′ .

Rule (CIPHER) checks encrypted values. Suppose K is the
name of a keystore with label `. Then c.K.i has type [τ ]`′ if
τ ≤ `t `′ holds. The label constraint ensures that a user who is au-
thorized to read the encrypted value and the key is also authorized
to read the plaintext value with type τ .

Rule (DEC) checks decryption expressions. Intuitively, if e has
type [τ ]`′ , then the result of decrypt(e) should have type τ . In
addition, information about the result of e can be inferred from
the decryption result. Thus, decrypt(e) has type τ t `′, ensuring its
label to be as high as `′.

Rule (ENC) is used to check encryption statements. Consider
statement e1 := encrypt(e2, K). The value of e1 is a memory lo-
cation for storing the encrypted value, and e1 has type [τ ]`′ ref`1 .
The keystore reference K has type keystore` ref⊥. The premise
τ ≤ ` t `′ is based on the same reasoning as in rule (CIPHER):
putting the ciphertext and the key together can recover the origi-
nal value with type τ . The premise `1 ≤ `′ is standard, protecting
information about e1 from being leaked through the assignment to
the memory location that e1 is evaluated to.

The premise ` ≤ τ is a superficial constraint, which is based
on the intuition that it is unnecessary to encrypt a value with a
key that is more confidential than the value itself. This constraint
is introduced to simplify the proof of noninterference. It does not
limit the expressiveness of Sweb because we can always assign a
low-confidentiality value to a high-confidentiality location and then
encrypt it using a high-confidentiality keystore.

The encryption statement has label stmt`u`′ because both a
memory location of label `′ and a keystore of label ` are updated by
this statement. This labeling prevents illegal implicit flows arising
from encryption. For example, consider the following code:

if !ms then mp := encrypt(ms, Ks) else skip

where the contents of ms and Ks are secret, and the value of mp is
public. Because of the encryption, attackers cannot infer the exact
value of ms from the value of mp after executing the code, but
they are able to infer whether the value of ms is positive. This
statement is not well-typed because mp := encrypt(ms, Ks) has
type stmt`p , and !ms has label `s, and `s 6≤ `p. The following code
demonstrates the implicit flow related to updating the keystore:

if !ms then mes := encrypt(ms, Kp) else skip

where the value of mes is a secret, but the content of Kp is public.
Therefore, attackers can infer whether ms is positive from how
many keys in Kp are used. Again, this statement is not well-typed
because mes := encrypt(ms, Kp) has type stmt`p .

Consider the web album example discussed in Section 1. The
following Sweb code implements storing an encrypted photo (using
keystore Kalice@gmail.com) on album.com:

malbum.com/ephoto := encrypt(!mphoto, Kalice@gmail.com)

Suppose Alice trusts that gmail.com and album.com will not
collude to leak her photo, but does not want gmail.com to be able
to access her photo. Then the value of mphoto has a label ` such
that ` ≤ `gmail.com t `album.com and ` 6≤ `gmail.com. By rule (ENC),
the above code is well-typed. However, the code would not be well-
typed if the encryption result is treated as public data (with label⊥)
as in previous work [4, 24].

Rule (SUB) is standard for subtyping. If term t (expression or
statement) has type τ , and τ is a subtype of τ ′, then t has type τ ′.



The subtyping rules of Sweb are shown below:

`1 ≤ `2
β`1 ≤ β`2

`2 ≤ `1
stmt`1 ≤ stmt`2

Intuitively, it is safe to treat low-confidentiality data as high-
confidentiality data, and a statement with only high-confidentiality
side effects as one with low-confidentiality side effects.

The type system of Sweb satisfies subject reduction. The proof
is standard and subsumed by the noninterference proof in Ap-
pendix A, so we simply state the theorem here.

Definition 5.1 (Γ ; W ` v : τ ). Value v has type τ with re-
spect to Γ and W , if Γ ` v : τ , and τ = [τ ′]` implies that
〈decrypt(v), W 〉 ⇓ v′ and Γ ; W ` v′ : τ ′.

Definition 5.2 (Γ ` W ). W is well-typed with respect to Γ,
written as Γ ` W , if dom(Γ) = dom(W ), and for any m in
dom(Γ), Γ ; W ` W (m) : Γ(m), and for any f in dom(Γ),
Γ ` W (f) : Γ(f).

Theorem 5.1 (Subject reduction). Suppose Γ ` W . If Γ ` e : τ
and 〈e, W 〉 ⇓ v, then Γ ` v : τ . If Γ ` s : τ and 〈s, W 〉 7−→
〈s′, W ′〉, then Γ ` s′ : τ and Γ ` W ′.

5.1 Noninterference theorem
Suppose s is a program, and W is the initial web state. The output
of s is the trace of web states generated from evaluating 〈s, W 〉.
For example, the evaluation 〈s, W 〉 7−→ 〈s1, W1〉 7−→ . . . 7−→
〈sn, Wn〉 generates the trace T = [W, W1, . . . , Wn].

The two executions 〈s, W1〉 and 〈s, W2〉 are indistinguishable
to low users if any two traces T1 and T2 generated from evaluating
the two configurations are low-equivalent. Based on definition 4.1,
we can define trace low equivalence, which formalizes the notion
of low-equivalent outputs. Intuitively, two traces are low-equivalent
if they may be generated by the same execution (one trace appears
to be the prefix of the other) from the perspective of low users. For-
mally, the low-equivalence relation between two traces is defined as
follows (where notation T1 ≈ T2 means that T1 and T2 are equal
up to stuttering):

Definition 5.3 (Γ ` T1 ≈L T2). There exist T ′
1 = [W1, . . . , Wn]

and T ′
2 = [W ′

1, . . . , W
′
m] such that T1 ≈ T ′

1, and T2 ≈ T ′
2, and

Γ ` Wi ≈L W ′
i for any i in {1, . . . , min(m, n)}.

With the notion of low-equivalent traces, it is straightforward to
define the noninterference theorem:

Theorem 5.2 (Noninterference). Suppose Γ ` s : τ , and Γ `
W1 ≈L W2. If T1 and T2 are the two traces of evaluating 〈s, W1〉
and 〈s, W2〉, respectively, then Γ ` T1 ≈L T2.

Proof. See Appendix A.

6. Related work
Using static program analysis to check information flow was first
proposed by Denning and Denning [10]; later work phrased the
analysis as type checking (e.g., [18]). Noninterference was later de-
veloped as a more semantic characterization of security [11], fol-
lowed by many extensions. Volpano, Smith and Irvine [26] first
showed that type systems can be used to enforce noninterference,
and proved a version of noninterference theorem for a simple im-
perative language, starting a line of research pursuing the nonin-
terference result for more expressive security-typed languages [12,
28, 6, 19].

More recent work looked into security-typed languages with
cryptographic primitives. Laud and Vene [14] presented a type sys-
tem for enforcing computationally secure information flow in the
presence of encryption. Askarov, Hedin and Sabelfeld [4] studied

a language with encryption, decryption and key generation prim-
itives, and showed its type system enforces possibilistic noninter-
ference. In comparison, our work considers a rather distinctive set
of cryptographic primitives that do not manipulate keys explicitly.
Moreover, the type systems in those previous work treat encryption
results as public data, and the treatment is too restrictive to handle
the case that an encryption key is less confidential than the plain-
text it encrypts. In contrast, the type system of Sweb assigns label
to a ciphertext based on the label of the encryption key, leading to
more permissive typing. The work of Askarov, Hedin and Sabelfeld
used possibilistic noninterference to avoid masking implicit flows
in ciphertexts. In our work, this issue is dealt with by considering
the preservation of equality relation between corresponding cipher-
texts.

Other work studied more abstract cryptography-related prim-
itives. Smith and Alpı́zar [24] investigated a random assignment
operator and showed a security-typed language with this operator
enforces probabilistic noninterference. Their work also considered
the encryption and decryption primitives, but also had the limita-
tion of assigning the lowest label to encryption results. Vaughan
and Zdancewic [25] considered abstract packaging operators that
rely on both static and dynamic checking for information flow con-
trol.

Abadi [1] presented a basic concurrent language (the spi calcu-
lus) with cryptographic primitives and a type system for enforcing
secrecy. Rather than modeling an information flow analysis, the
typing rules of the spi calculus formalize the principles and rules
for achieving secrecy properties in security protocols.

Also related is work on connecting formal cryptographic anal-
ysis techniques and computational security models. For example,
Abadi and Rogaway [2] proved the computational soundness of
Dolev-Yao analysis. More recently, Backes and Pfitzmann [5] in-
vestigated a Dolev-Yao style cryptographic library and established
the relation between symbolic and cryptographic secrecy properties
for cryptographic protocols.

Jammalamadaka et al. [13] presented the gVault system, a cryp-
tographic network file system built on the Gmail service. In gVault,
encryption keys are generated and recomputed using user pass-
words, which is susceptible to dictionary attacks and requires
a password recovery mechanism that may have usability issues.
Moreover, it is not clear that the password-based key management
can be applied to more complex web applications involving multi-
ple sites.

Declassification constructs have been introduced in a few
security-typed languages [17, 15] for intentional information re-
leases. A typical use of these constructs is to release encryption re-
sults of confidential data to low users. However, a declassification
mechanism is generally too powerful to allow any noninterference-
like assertion being made.

The sequential programming model for distributed systems with
untrusted components was first used in the secure program parti-
tioning work [30, 31] and later in the Swift system [8]. We use this
model for its simplicity rather than because it makes programming
distributed applications easier.

7. Conclusions
This paper presents a nonintrusive encryption mechanism for the
Web. The core idea is to make key generation and management
transparent, to achieve high usability. Although it prevents key
reuse, transparent key management is practical for the Web envi-
ronment since large number of encryption keys can be easily stored
on the Web. This paper also proves the soundness of the encryp-
tion mechanism in the context of a security-typed language, which
provides a permissive and flexible way of typing the encryption
primitive, formalizing the observation that the confidentiality of a



plaintext can be protected by keeping either the ciphertext or the
encryption key confidential.

In Sweb, each encryption is assumed to take place with a new
key. At the cost of a more complex dependent type system, one
could imagine separating key generation from encryption, which
would allow Sweb to be used to describe more sophisticated proto-
cols. This is worth further investigation.
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A. Noninterference proof
The noninterference result for Sweb is proved by extending the lan-
guage to a new language XSweb. Each configuration C in XSweb
encodes two Sweb configurations C1 and C2. Moreover, the oper-
ational semantics of XSweb is consistent with that of Sweb in the
sense that the result of evaluating C is an encoding of the results
of evaluating C1 and C2 in Sweb. The type system of XSweb can
guarantee that C is well-typed only if the low-confidentiality parts
of C1 and C2 are equivalent. Intuitively, if the result of C is well-
typed, then the results of evaluating C1 and C2 should also have
equivalent low-confidentiality parts. Therefore, the preservation of
type soundness in an XSweb evaluation implies the preservation of
low-equivalence between two Sweb evaluations. Thus, to prove the
noninterference theorem of Sweb, we only need to prove the sub-
ject reduction theorem of XSweb. This proof technique was first
used by Pottier and Simonet to prove the noninterference result of
a security-typed ML-like language [19].

A.1 Syntax extensions
The syntax extensions of XSweb include the bracket constructs,
which are composed of two Sweb terms and used to capture the
differences between two Sweb configurations.

Values v ::= . . . | (v1 | v2)
Statements s ::= . . . | (s1 | s2)

The bracket constructs cannot be nested, so the subterms of a
bracket construct must be Sweb terms. Given an XSweb statement
s, let bsc1 and bsc2 represent the two Sweb statements that s
encodes. The projection functions satisfy b(s1 | s2)ci = si and
are homomorphisms on other statement and expression forms. An
XSweb state W maps references to XSweb terms that encode two
Sweb terms. Thus, the projection function can be defined on web
states too. For i ∈ {1, 2}, dom(bW ci) = dom(W ), and for any
m ∈ dom(W ), bW ci(m) = bW (m)ci.

Since an XSweb term effectively encodes two Sweb terms,
the evaluation of a XSweb term can be projected into two Sweb
evaluations. An evaluation step of a bracket statement (s1 |s2) is an
evaluation step of either s1 or s2, and s1 or s2 can only access the
corresponding projection of the web state. Thus, the configuration
of XSweb has an index i ∈ {•, 1, 2} that indicates whether the
term to be evaluated is a subterm of a bracket expression, and if so,
which branch of a bracket the term belongs to. For example, the
configuration 〈s, W 〉1 means that s belongs to the first branch of a
bracket, and s can only access the first projection of W . We write
“〈s, W 〉” for “〈s, W 〉•”, which means s does not belong to any
bracket.

The operational semantics of XSweb is shown in Figure 4. It
is based on the semantics of Sweb and contains some new eval-
uation rules (E5), (S8–S11) for manipulating bracket constructs.
Rules (E1), (S6) and (S7) are modified to access the web state pro-
jection corresponding to index i. The rest of the rules in Figure 2 are
adapted to XSweb by indexing each configuration with i. The fol-
lowing adequacy and soundness lemmas state that the operational
semantics of XSweb is adequate to encode the execution of two
Sweb terms.

Let the notation 〈s, W 〉 7−→T 〈s′, W ′〉 denote that 〈s, W 〉 7−→
〈s1, W1〉 7−→ . . . 7−→ 〈sn, Wn〉 7−→ 〈s′, W ′〉 and T =
[W, W1, . . . , Wn, W ′], or s = s′ and W = W ′ and T = [W ].
In addition, let |T | denote the length of T , and T1 ⊕ T2 de-
note the trace obtained by concatenating T1 and T2. Suppose
T1 = [W1, . . . , Wn] and T2 = [W ′

1, . . . , W
′
m]. If Wn = W ′

1, then
T1 ⊕ T2 = [W1, . . . , Wn, W ′

2, . . . , W
′
m]. Otherwise, T1 ⊕ T2 =

[W1, . . . , Wn, W ′
1, . . . , W

′
m].

Lemma A.1 (Projection i). Suppose 〈e, W 〉 ⇓ v. Then for i ∈
{1, 2}, 〈beci, bW ci〉 ⇓ bvci holds.

(E1)
πi W (m) = v v 6= none

〈!m, W 〉i ⇓ v

(E4)
〈e1, W 〉i ⇓ v1 〈e2, W 〉i ⇓ v2 v = v1 ⊕ v2

〈e1 + e2, W 〉 ⇓ v

(E5)

〈e, W 〉 ⇓ v bvc1 6= bvc2
〈decrypt(bvci), W 〉i ⇓ vi, i ∈ {1, 2}

〈decrypt(e), W 〉 ⇓ (v1 | v2)

(S6)

〈e1, W 〉i ⇓ m 〈e2, W 〉i ⇓ v W (K) = K
newkey(bKci) = i :k E(v, k) = c
W ′′ = W [m 7→ W (m)[c.K.i/πi]]

W ′ = W [K 7→ K[i 7→i k]]

〈e1 := encrypt(e2, K), W 〉i 7−→ 〈skip, W ′〉i

(S7)
〈e1, W 〉i ⇓ m 〈e2, W 〉i ⇓ v

〈e1 := e2, W 〉i 7−→ 〈skip, W [m 7→ W (m)[v/πi]]〉i

(S8)
〈e, W 〉 ⇓ (n1 | n2)

〈if e then s1 else s2, W 〉 7−→
〈(if n1 then bs1c1 else bs2c1 |
if n2 then bs1c2 else bs2c2), W 〉

(S9)
〈si, W 〉i 7−→ 〈s′i, W ′〉i sj = s′j {i, j} = {1, 2}

〈(s1 | s2), W 〉 7−→ 〈(s′1 | s′2), W ′〉

(S10) 〈(skip | skip), W 〉 7−→ 〈skip, W 〉

(S11)
〈e1, W 〉 ⇓ (m1 |m2)

〈e1 := e2, W 〉 7−→ 〈(m1 := be2c1 |m2 := be2c2), W 〉

(S12)

〈e1, W 〉 ⇓ (m1 |m2)
Let si be m1 := encrypt(be2c1, K), i ∈ {1, 2}
〈e1 := encrypt(e2, K), W 〉 7−→ 〈(s1 | s2), W 〉

[Auxiliary functions]

v[v′/π•] = v′ π• v = v
v[v′/π1] = (v′ | bvc2) π1 v = bvc1
v[v′/π2] = (bvc1 | v′) π2 v = bvc2
v[(c1 | c2).K.(i1 | i2)/π•] = (c1.K.i1 | c2.K.i2)

Figure 4. The operational semantics of XSweb

Proof. By induction on the structure of e.

Lemma A.2 (Projection ii). Suppose W is an XSweb state, and
bW ci = Wi for i ∈ {1, 2}, and 〈s, Wi〉 is an Sweb configuration.
Then 〈s, Wi〉 7−→ 〈s′, W ′

i 〉 if and only if 〈s, W 〉i 7−→ 〈s′, W ′〉i
and bW ′ci = W ′

i .

Proof. By induction on the structure of s.

Lemma A.3 (Expression adequacy). If for i ∈ {1, 2}, 〈ei, Wi〉 ⇓
vi, and there exists 〈e, W 〉 in XSweb such that beci = ei and
bW ci = Wi. Then 〈e, W 〉 ⇓ v such that bvci = vi.

Proof. By induction on the structure of e.

Lemma A.4 (One-step adequacy). Suppose for i ∈ {1, 2},
〈si, Wi〉 7−→ 〈s′i, W ′

i 〉 is an evaluation in Sweb, and there ex-
ists 〈s, W 〉 in XSweb such that bsci = si and bW ci = Wi. Then
there exists 〈s′, W ′〉 such that 〈s, W 〉 7−→T 〈s′, W ′〉, and one of
the following conditions holds:



i. For i ∈ {1, 2}, bT ci ≈ [Wi, W
′
i ] and bs′ci = s′i.

ii. For {j, k} = {1, 2}, bT cj ≈ [Wj ] and bs′cj = sj , and
bT ck ≈ [Wk, W ′

k] and bs′ck = s′k.

Proof. By induction on the structure of s. The proof is largely
similar to the one in the noninterference proof of Aimp [32]. We
just show some cases here.

• s is e1 := e2. In this case, si is be1ci := be2ci, and
〈be1ci := be2ci, Wi〉 7−→ 〈skip, Wi[mi 7→ vi]〉 where
〈be1ci, Wi〉 ⇓ mi and 〈beci, Wi〉 ⇓ vi. By Lemma A.3, we
have 〈e1, W 〉 ⇓ m such that bmci = mi, and 〈e2, W 〉 ⇓ v
such that bvci = vi. If m1 = m2, then 〈e1 := e2, W 〉 7−→
〈skip, W [m 7→ v]〉. Since bW ci = Wi, we have bW [m 7→
v]ci = Wi[m 7→ bvci]. Finally, we have bs′ci = s′i = skip
for i ∈ {1, 2}. If m1 6= m2, then 〈s, W 〉 7−→ 〈(be1c1 :=
be2c1 | be1c2 := be2c2), W 〉 7−→ 〈(skip | be1c2 :=
be2c2), W [m1 7→ W (m1)[v1/π1]]〉. It is easy to verify that
this execution satisfies condition (ii).

• s is e1 := encrypt(e2, K). By the same argument as the above
case.

• s is call f . Then si is also call f , and 〈si, Wi〉 7−→ 〈s′, Wi〉
where s′ = Wi(f). Therefore, 〈s, W 〉 7−→ 〈s, W 〉.

Lemma A.5 (Adequacy). Suppose 〈si, Wi〉 7−→Ti 〈s′i, W ′
i 〉 for

i ∈ {1, 2} are two evaluations in Sweb. Then for an XSweb
configuration 〈s, W 〉 such that bsci = si and bW ci = Wi for
i ∈ {1, 2}, we have 〈s, W 〉 7−→T 〈s′, W ′〉 such that bT cj ≈ Tj

and bT ck ≈ T ′
k, where T ′

k is a prefix of Tk and {k, j} = {1, 2}.

Proof. By induction on the sum of the lengths of T1 and T2:
|T1|+ |T2|.

• |T1| + |T2| ≤ 3. Without loss of generality, suppose |T1| = 1.
Then T1 = [W1]. Let T = [W ]. We have 〈s, W 〉 7−→T

〈s, W 〉. It is clear that bT c1 = T1, and bT c2 = [W2] is a
prefix of T2.

• |T1| + |T2| > 3. If |T1| = 1 or |T2| = 1, then the
same argument in the above case applies. Otherwise, we have
〈si, Wi〉 7−→ 〈s′′i , W ′′

i 〉 7−→T ′
i 〈s′i, W ′

i 〉 and Ti = [Wi]⊕ T ′
i

for i ∈ {1, 2}. By Lemma A.4, 〈s, W 〉 7−→T ′
〈s′′, W ′′〉 such

that
i. For i ∈ {1, 2}, bT ′ci ≈ [Wi, W

′′
i ] and bs′′ci = s′′i .

Since |T ′
1| + |T ′

2| < |T1| + |T2|, by induction we have
〈s′′, W ′′〉 7−→T ′′

〈s′, W ′〉 such that for {k, j} = {1, 2},
bT ′′cj ≈ T ′

j and bT ′′ck ≈ T ′′
k , and T ′′

k is a prefix of T ′
k.

Let T = T ′ ⊕ T ′′. Then 〈s, W 〉 7−→T 〈s′, W ′〉, and
bT cj ≈ Tj , and bT ck ≈ T ′

k where T ′
k = [Wk, W ′′

k ] ⊕ T ′′
k

is a prefix of Tk.
ii. For {j, k} = {1, 2}, bT ′cj ≈ [Wj ] and bscj = sj , and
bT ′ck ≈ [Wk, W ′′

k ] and bsck = s′′k . Without loss of gen-
erality, suppose j = 1 and k = 2. Since 〈s1, W1〉 7−→T1

〈s′1, W ′
1〉 and 〈s′′2 , W ′′〉 7−→T ′

2 〈s′2, W ′
2〉, and bs′c1 = s1

and bs′c2 = s′′2 , and |T ′
2| < |T2|, we can apply the induc-

tion hypothesis to 〈s′′, W ′′〉. By the similar argument in the
above case, this lemma holds for this case.

Lemma A.6 (Soundness). Suppose 〈s, W 〉 7−→ 〈s′, W ′〉. Then
〈bsci, bW ci〉 7−→∗ 〈bs′ci, bW ′ci〉.

Proof. By induction on the derivation of 〈s, W 〉 7−→ 〈s′, W ′〉.

A.2 Typing rules
The type system of XSweb includes all the typing rules in Fig-
ure 3 and has two additional rules for typing bracket constructs.
The bracket constructs captures the differences between two Sweb
configurations. As a result, any effect and result of a bracket con-
struct should have a high label ` (` 6≤ L) except for a bracket of
two encrypted values. Consider a bracket (v1 | v2) with type [τ ]`.
If ` ≤ L and τ 6≤ L, then low users still cannot differentiate the
two executions from the value. Type τ itself may be an encrypted
type [τ ′]`′ . Then `′ may be low if τ ′ has a high label. Let notation
label+(τ) be ` if τ = β` and β is not [τ ′], or ` t label+(τ ′) if
τ = [τ ′]`. Then a bracket value (v1 | v2) has type τ if both v1 and
v2 have type τ and label+(τ) 6≤ L.

(V-PAIR)
Γ ` v1 : τ Γ ` v2 : τ label+(τ) 6≤ L

Γ ` (v1 | v2) : τ

(S-PAIR)
Γ ` s1 : τ Γ ` s2 : τ τ 6≤ L

Γ ` (s1 | s2) : τ

A.3 Subject reduction
Lemma A.7 (Update). Suppose Γ ` v : τ , and Γ ` v′ : τ , and
i ∈ {1, 2} implies that τ 6≤ L. Then Γ ` v[v′/πi] : τ .

Proof. If i is •, then v[v′/πi] = v′, and we have Γ ` v′ : τ . If i is
1, then v[v′/πi] = (v′ |bvc2) and τ 6≤ L. Since Γ ` v : τ , we have
Γ ` bvc2 : τ . By rule (V-PAIR), Γ ` (v′ | bvc2) : τ . Similarly, if i
is 2, we also have Γ ` v[v′/πi] : τ .

Definition A.1 (Γ ` W ). W is well-typed with respect to Γ, writ-
ten Γ ` W , if dom(Γ) = dom(W ) and the following conditions
hold:

• ∀m ∈ dom(Γ). Γ ; W ` W (m) : Γ(m).
• For any f , Γ ` W (f) : Γ(f).
• For any K, if label(K) ≤ L, then bW (K)c1 = bW (K)c2.
• For any m1, m2 such that label(m1) t label(m2) ≤ L,
bW ci,L

1 (m1) = bW cj,L
1 (m2) iff bW ci,L

2 (m1) = bW cj,L
2 (m2).

Lemma A.8. Suppose Γ ` e : τ , and Γ ` W , and 〈e, W 〉 ⇓ v.
Then Γ ` v : τ .

Proof. By induction on the structure of e.

Lemma A.9. Suppose Γ ` W , and Γ ` e : τ such that τ ≤ L.
If 〈e, W 〉 ⇓ (v1 | v2), then for any m such that label(m) ≤ L,
bW ci,L

1 (m) = bW cj,L
1 (v1) iff bW ci,L

2 (m) = bW cj,L
2 (v2).

Proof. By induction on the structure of e.

Theorem A.1 (Subject reduction). Suppose Γ ` s : τ , and Γ ` W ,
and 〈s, W 〉i 7−→ 〈s′, W ′〉i, and i ∈ {1, 2} implies τ 6≤ L. Then
Γ ` s′ : τ and Γ ` W ′.

Proof. By induction on the evaluation step 〈s, W 〉i 7−→ 〈s′, W ′〉i.
The cases for rules (S5) and (S10) are trivial.

• Case (S1). In this case, s is if ethens1 elses2. By the typing
rule (IF), we have Γ ` s1 : τ .

• Case (S2). By the same argument as case (S1).
• Case (S3). In this case, s is call f , and s′ is W (f). By rule

(FUN), Γ(f) = τ . Since Γ ` W , we have Γ ` s′ : τ .
• Case (S4). By induction.



• Case (S6). s is e1 := encrypt(e2, K), and s′ is skip. So Γ `
s′ : τ immediately holds. By rule (S6), we have 〈e1, W 〉i ⇓
m, and 〈e2, W 〉i ⇓ v. If i ∈ {1, 2}, then τ 6≤ L, which
implies that label(m) 6≤ L and label(K) 6≤ L. Therefore,
Γ ` W ′. Now consider the case that label(m) ≤ L. Suppose
Γ ` e2 : τe. If τe ≤ L, then v is not a bracket value, and
label(K) ≤ L. Thus, (i : k) = newkey(K), and c = E(v, k),
and W ′′ = W [m 7→ c.K.i]. It is clear that Γ ` c.K.i : [τe]`,
and the decryption result of W ′′(m) is v, which has type τe by
Lemma A.8. Therefore, Γ ` W ′′. Furthermore, since W ′ =
W ′′[K 7→ K′], we have Γ ` W ′.
Suppose τe 6≤ L, and Γ(m) = [τe]`. If label(K) ≤ L, then
` 6≤ L, and we have Γ ` W ′. Otherwise, label(K) 6≤ L,
and (i1 | i2) : (k1 | k2) = newkey(K). Thus, (c1 | c2) =
E(v, (k1 | k2)). By rule (V-PAIR), Γ ` (c1.K.i1 | c2.K.i2) :
[τe]`. Since the keys corresponding to i1 and i2 are new keys,
there does not exist m′ and i and j such that ci.K.ii 6=
bW cj,L

i (m′). Therefore, Γ ` W ′.
• Case (S7). The interesting scenario is that i is •, and e2 has type

[τ ′]` such that ` ≤ L. Suppose 〈e1, W 〉 ⇓ v, and v = (v1 |v2).
Then label+(τ ′) 6≤ L. By Lemma A.9, Γ ` W ′.

• Case (S8). In this case, s is if ethens1elses2, and i must be •.
Suppose Γ ` e : int`. By Lemma A.8, Γ ` (n1|n2) : int`. By
rule (V-PAIR), ` 6≤ L. By rule (IF), Γ ` si : τ for i ∈ {1, 2}.
Therefore, Γ ` if ni then bs1ci else bs2ci : τ for i ∈ {1, 2}.
By rule (S-PAIR), Γ ` s′ : τ , because τ 6≤ L.

• Case (S9). In this case, s is (s1 | s2). Without loss of gen-
erality, suppose 〈s1, W 〉1 7−→ 〈s′1, W ′〉1, and 〈s, W 〉 7−→
〈(s′1 | s2), W ′〉. By rule (S-PAIR), Γ ` s1 : τ . By induction,
Γ ` s′1 : τ and Γ ` W ′. By rule (S-PAIR), Γ ` s′ : τ since
τ 6≤ L.

• Case (S11). In this case, Γ ` e1 : τ ′ ref` and ` 6≤ L, which
implies τ 6≤ L. By rule (S-PAIR), Γ ` s′ : τ .

• Case (S12). By the same argument as in case (S11).

A.4 Noninterference
Theorem A.2 (Noninterference). If Γ ` s : τ , then s satisfies the
noninterference property.

Proof. Given W1 and W2 in Sweb, let W = W1]W2 be an XSweb
state computed as follows:

W1 ]W2(r) =


W1(r) if W1(r) = W2(r)
(W1(r) |W2(r)) if W1(r) 6= W2(r)

Then Γ ` W1 ≈L W2 implies Γ ` W . Suppose 〈si, Wi〉 7−→Ti

〈s′i, W ′〉 for i ∈ {1, 2}. Then by Lemma A.5, there exists 〈s′, W ′〉
such that 〈s, W 〉 7−→T 〈s′, W ′〉, and bT cj ≈ Tj and bT ck ≈ T ′

k

where {j, k} = {1, 2} and T ′
k is a prefix of Tj . By Theorem A.1,

for each W ′ in T , Γ ` W ′, which implies that bW ′c1 ≈L

bW ′c2. Therefore, we have Γ ` Tj ≈L T ′
k. Thus, s satisfies the

noninterference property.


